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Learning is impaired by loss of stable circadian 
rhythms (Smarr et al., 2014) and by sleep disturbances 
(Arzi et al., 2012; Diekelmann et al., 2012; Gujar et al., 

2010; Lim et al., 2007; Potkin and Bunney, 2012; 
Ratcliff and Van Dongen, 2009; Van Dongen et al., 
2012; Watts et al., 2012). Learning is also modulated 
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Abstract  Stability of sleep and circadian rhythms are important for healthy 
learning and memory. While experimental manipulations of lifestyle and learn-
ing outcomes present major obstacles, the ongoing increase in data sources 
allows retrospective data mining of people’s sleep timing variation. Here I use 
digital sleep-log data generated by 1109 students in a biology lab course at the 
University of Washington to test the hypothesis that higher variance in time 
asleep and later sleep-onset times negatively correlate with class performance, 
used here as a real-world proxy for learning and memory. I find that sleep dura-
tion variance and mean sleep-onset times both significantly correlate with class 
performance. These correlations are powerful on weeknights but undetectable on 
Friday and Saturday nights (“free nights”). These correlations also show sex dif-
ferences, with women showing stronger (both larger and more powerful) nega-
tive correlations than men. Finally, although these data come with no demographic 
information beyond sex, the constructed demographic groups of “larks” and 
“owls” within the sexes reveal a significant decrease in performance of owls rela-
tive to larks in male students, whereas the correlation of performance with sleep-
onset time for all male students was only a near-significant trend. This provides 
a proof of concept that deeper demographic mining of digital logs in the future 
may identify subgroups for which certain sleep phenotypes have greater predic-
tive value for performance outcomes. The data analyzed are consistent with 
known patterns, including sleep-timing delays from weeknights to free nights 
and sleep-timing delays in men relative to women. These findings support the 
hypothesis that modern schedule impositions on sleep and circadian timing have 
consequences for real-world learning and memory. This study also highlights the 
low-cost, large-scale benefits of personal, daily, digital records as an augmenta-
tion of sleep and circadian studies.
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by the time of day relative to sleep-onset time, 
although the precise phase of learning optimization 
differs by sex and the specific type of learning 
(Kuriyama et al., 2011; Kvint et al., 2011; Watts et al., 
2012). This time of day effect appears to be guided by 
an organism’s internal daily timing system, its circa-
dian rhythms, which in humans are consistent within 
individuals, shaped by networks of “clock genes” 
that predispose individuals to consistently sleep ear-
lier or later in the day (a person’s “chronotype”) 
(Duffy et al., 1999; Duffy et al., 2001; Juda et al., 2013; 
Nováková et al., 2013; Pagani et al., 2010). However, a 
person’s daily timing is also influenced by imposed 
social restrictions or expectations, and these may 
interfere with optimal circadian stability and sleep 
hygiene for some chronotypes more than others, 
thereby negatively affecting learning and memory in 
those chronotyped individuals.

For students in modern Western society, social 
impositions on sleep timing come in two major forms: 
schedule instability caused by different day-to-day 
expectations (e.g., irregular class or work schedules) 
and the weekday imposition that most individuals 
rise early on at least some days (i.e., school or work 
starts early in the day but ends many hours before 
sleep-onset). Given that circadian insult and sleep dis-
ruption both impair learning, I hypothesize that those 
individuals showing the greatest day-to-day variance 
in sleep time (duration of) and later sleep times (an 
indication that a person may be a late chronotype) 
should be most negatively affected by Western social 
scheduling expectations. If this is the case, then daily 
sleep-timing information may have predictive value 
for students at risk of disrupted learning ability from 
sleep and circadian instability and/or misalignment. 
The University of Washington ran a sleep-logging lab 
in an introductory physiology course for a full year 
from spring quarter 2012 through winter quarter 2013. 
To test the above hypotheses, this already extant data 
set was mined for correlations of sleep-timing to class 
performance in the physiology course in which the 
lab was run.

Methods

Data Collection

Under the UC Berkeley institutional review board 
protocol 2013-02-4982, data were gathered in the form 
of already extant log entries generated by a class exer-
cise and de-identified prior to analysis. Student sex 
was based on official university registration material.

Sleep logs were gathered from students logging 
into a website daily for 22 consecutive days per 

academic quarter, encompassing 3 full weeks plus 
one extra Friday (Friday through 3 Fridays hence). 
The website was generated and maintained at the 
Department of Biology at the University of 
Washington. Students were presented with pull-
down menus of 15-min increments in clock-time and 
asked to respond to 2 questions:

What time, to the nearest quarter-hour, did you 
FALL ASLEEP last night (note: this may differ 
from when you went to bed)?

What time, to the nearest quarter-hour, did you 
WAKE UP this morning (do not include short 
bouts of wake—only the time you finally 
awoke) (note: this may differ from when you 
got out of bed)?

Each daily log could only be completed until mid-
night on the day for which wake was logged, with 
missed entries left blank. Data were collected as part 
of a class exercise for 3 weeks per academic quarter 
from spring 2012 through winter 2013. Nights 
recorded were automatically separated into “week-
nights” (Sunday-Thursday) or “free nights” (Friday-
Saturday) as part of the lab class exercise. In total, 
1109 students’ records were gathered across the 4 aca-
demic quarters analyzed.

De-identification and Data Filtering

Upon obtaining these data, student IDs were 
replaced with randomly generated 4-digit pins; all 
record information was deleted except for the pin 
number, sex, final class grade, and sleep-log entries. 
These were filtered to remove entries that reported 
wake-onset after 1500 h or sleep-onset before 1200 h 
preceding the night logged (e.g., 0200 h 7/26/12 
sleep-onset was acceptable for the night of 7/25/12 
but not for the night of 7/26/12) and to remove any 
incomplete entries. This removed 6% of the nightly 
log entries. Only individuals with at least 3 week-
night logs and 3 free-night logs following filtering 
were included in the analysis. This left 507 female 
and 350 male records for analysis, each with 3 to 15 
weeknight records and 3 to 7 free-night records. 
These data were used to create individual student 
mean sleep-onset, mean wake-onset, mean duration, 
and standard error of the mean (SEM) for these vari-
ables on both weeknights and free nights. Distributions 
of student performance (individuals’ grades from the 
class and quarter in which each individual generated 
his or her sleep logs) were roughly normal but with a 
slight skew to the right, indicating higher perfor-
mance. Because grades may vary by sex and by quar-
ter, all grades are normalized for sex and quarter by 
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setting the range of performance for each sex per 
quarter from 0 to 1 (e.g., male student spring grades 
go from 0-1, female student spring grades go from 0-1, 
etc.) to eliminate effects of sex and quarter on perfor-
mance (e.g., effects of each quarter being a different 
teacher and slightly different class material).

Statistics

Data collation was performed with Microsoft Excel 
2013. Many variable distributions were not normal 
according to Kolmogorov-Smirnov tests, and so 
Wilcoxon rank sum tests were used in place of t tests to 
compare distributions. Kolmogorov-Smirnov tests for 
normality were run in MATLAB 2013 using the kstest 
function. Wilcoxon rank sum tests were run in 
MATLAB 2013 using the ranksum function, and cor-
relations were run in MATLAB 2013 using the corrcoef 
function. Multiple regression analysis was performed 
in MATLAB 2014 using the fitlm function on data 
transformed from raw values into variable-specific z 
values. The p values for Wilcoxon rank sum tests and 
correlations were only considered significant if <0.05 
after Bonferroni correction but are reported as the raw 
p values. Plots were made in MATLAB or Microsoft 
Excel and formatted using Adobe Photoshop. A table 
of descriptive statistics for all variables with correla-
tions to class performance is provided as Supplemental 
Table S1 for those interested.

Results

Predictive Variables for Class Performance

Higher sleep-duration SEM on weeknights nega-
tively correlates with class performance (r = −0.21, p = 2 

× 10−10). Splitting the analysis pool by sex reveals that 
both women and men show this negative correlation, 
but the relationship is stronger in women (r = −0.24, 
p = 6.6 × 10−8; Fig. 1A) than in men (r = −0.19, p = 0.0004; 
Fig. 1B). Mean sleep duration on weeknights or free 
nights does not correlate with class performance for 
women or men (weeknights: r = 0.08, p = 0.12 for men 
and r = 0.1, p = 0.03 for women; free nights: r = 0.14, 
p = 0.01 for men and r = 0.07, p = 0.12 for women).

Later mean sleep-onset time on weeknights also 
negatively correlates with class performance (r = 
−0.13, p = 8 × 10−5), whereas wake-onset on week-
nights does not (r = −0.07, p = 0.04). Neither mean 
sleep-onset nor mean wake-onset on free nights cor-
relates as well with class performance (r = −0.10, p = 
0.003 and r = −0.03, p = 0.44, respectively). The corre-
lation of class performance with mean weeknight 
sleep-onset is higher for women than for men (r = 
−0.16, p = 0.0003, Fig. 2A for women; r = −0.13, p = 
0.02 [nonsignificant], Fig. 2B for men).

Because weeknight sleep-onset and sleep-duration 
SEM both correlate with class performance, the effect 
of one may be subsumed by the effect of the other, 
and sex may influence the extent to which that is so. 
Mean weeknight sleep-onset and mean weeknight 
sleep-duration SEM are significantly correlated (r = 
0.315, p = 3.6 × 10−21), and multiple regression analy-
sis of class performance by both with sex reveals that 
the latter has roughly twice the predictive power of 
the former (standard coefficient = −0.19, p = 1 × 10−7; 
standard coefficient = −0.09, p = 0.035, respectively, 
while for the categorical variable sex, with women = 
1, men = 0, the standard coefficient = −0.24, p = 
0.0003). Broken into sex-specific multiple regressions 
for weeknight sleep-duration SEM and weeknight 
sleep-onset, women have standard coefficients of 
−0.21 (p = 6.6 × 10−6) and −0.10 (p = 0.03), respectively. 
Men have standard coefficients of −0.16 (p = 0.004) 

Figure 1.  Duration standard error of the mean (SEM) correlates with class performance for both sexes. Weeknight sleep-duration SEM 
for each female student (A) and male student (B) plotted against relative class performance. Linear regression finds a significant correla-
tion for women (A, r = −0.24, p = 6.6x10−8) and men (B, r = −0.19, p = 0.0004).
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and −0.07 (p = 0.18 [not significant, consistent with 
the single-variable regression]), respectively.

The preceding correlations were generated by 
regression across the entire population. Improved 
diagnostics might be uncovered by clustering specific 
subsets of students into phenotypes. Lacking other 
demographic information by which to sort students, I 
used the categories of “lark” and “owl” to test this 
hypothesis. Owls and larks were defined arbitrarily 
as individuals with a mean weeknight sleep-onset 1 
standard deviation later or earlier, respectively, than 
the population mean (women and men being treated 
as 2 populations). Consistent with the hypothesis that 
phenotypic clustering could yield increased predic-
tive power, a significant difference in median class 
performance exists between male owls and larks, 
whereas for population-wide regressions, males did 
not show a significant correlation of performance 
with sleep-onset time. For females, this difference is a 
trend. Male owls have a mean 7.1% worse class per-
formance than male larks (median, 5% worse), and 
female owls average 6.3% worse class performance 
than female larks (median, 2.5% worse) (p = 0.0125 
for males, Fig. 3A, and p = 0.057 for females, Fig. 3B; 
Wilcoxon rank sum test, males significant after 
Bonferroni-corrected for the multiple comparisons).

The data here come from self-reporting, which 
yields less precise sleep timing than more invasive 
sleep-tracking methods. Nevertheless, these data 
were judged to reflect reality because they recapitu-
late known sleep patterns of weekend shift and of 
sex difference in sleep timing. Students may shift 
their daily sleep rhythms on weekends to enable 
more peer interactions or to eliminate sleep debt 
accumulated during the week. Consistent with these 
expectations, students delayed sleep-onset on free 
nights by 28 min on average and delayed wake-
onset by 88 min on average. Student sleep times also 
show an expected sex difference in mean 

sleep-onset, with men on average going to sleep 15 
min later and waking up 20 min later than their 
female counterparts (2-sided Wilcoxon rank sum 
test, p = 0.002 and 8.1 × 10−5, respectively). This sex 
difference in sleep timing is consistent with effects 
of sex hormones and chromosomes on sleep param-
eters (Colvin et al., 1969; Ehlen et al., 2013; Paul et 
al., 2009; Paul et al., 2008) as well as the human sub-
ject literature (Randler, 2007; Van Reen et al., 2013). 
Such consistency with expected results from the lit-
erature further validates the present approach.

Discussion

The analyses here support the hypothesis that 
social impositions on sleep timing and daily stability 
affect learning in individuals whose sleep patterns 
are in conflict with these impositions. Specifically, a 
lack of daily stability in sleep duration is correlated 
with lowered academic performance in men and 
women. For women, having later sleep-timing is also 
correlated with lessened academic performance, 
whereas for men, this effect appears to be attenuated, 
significantly affecting only extreme late types 
(“owls”). The analyses presented here cannot get at 
causality, but given the clear importance of both sleep 
and circadian stability in learning and memory, the 
correlations are not surprising and would be worth 
investigation through real-world experiments. For 
example, delaying school start times positively affects 
sleep duration and quality and increases self-reported 
performance (Owens et al., 2010), but detailed analy-
sis of performance and effects of sex have not been 
reported and would be worth exploring.

The importance of regulated sleep and circadian 
rhythms (duration, quality, phase-stability, etc.) in the 
ability to learn and form memories has long been 

Figure 2.  Sleep-onset correlates with class performance for women. Mean weeknight sleep-onset time for each female student (A) and 
male student (B) plotted against relative class performance. Linear regression finds a significant correlation for women (A, r = −0.16, p = 
0.0003) but not for men (B, r = −0.13, p = 0.02 [nonsignificant after multiple comparison corrections]).

 at UNIV CALIFORNIA SAN DIEGO on June 8, 2016jbr.sagepub.comDownloaded from 

http://jbr.sagepub.com/


Smarr / Digital Sleep Logs and Class Performance  65

appreciated, with many theories proposed to explain 
the connection (e.g., Frank, 2013; Genzel et al., 2013; 
Gibson et al., 2010; Kvint et al., 2011; Lee et al., 2009; 
Pereyra et al., 1996; Rupp et al., 2010; Tononi and 
Cirelli, 2012; Wright et al., 2006). The current study 
offers unique contributions in several ways. It is the 
first study to include such a large sample size and to 
do so with data from real life over several weeks con-
tinuously. This ensures samples both within and 
across subjects, so that individual variance, and not 
just means, can be assessed to detect patterns not oth-
erwise visible. The value of this is reflected in the 
finding that intraindividual variance of sleep dura-
tion is the strongest correlate of class performance 
found here, whereas mean duration alone had no 

predictive power (perhaps because of the tight clus-
tering of average sleep durations or the lack of a 
large group of students with very short average 
durations). Previous observations that sleep dura-
tion did not correlate with class performance caused 
concern about the efficacy of investigations into the 
relationship of sleep and learning (Eliasson et al., 
2002; Genzel et al., 2013). The findings here suggest 
that the connection does exist and that collection of 
larger data sets will help identify more subtle pat-
terns. The large sample size also allows dissection of 
subgroups—men and women, larks and owls—for 
more fine-grained analysis. Finally, this study high-
lights the advantages of web- and smartphone-based 
logs to generate running sleep-log databases for the 
generation of large-scale data sets at low cost and 
with low subject and investigator burden. Such data 
sets could be used to augment more invasive human 
sleep and circadian studies. Generation of such data 
is likely to become less expensive, easier, and more 
integrated in public use with time as the wearable 
device market, the Quantified Self movement, and so 
on (Bowden, 2012; Fortino et al., 2014; Teller, 2006) 
grow.

The present study suffers from a dependence on 
self-reported data (already discussed) and from a 
lack of variable richness. Sex is the only given inde-
pendent demographic variable available for decom-
position of the data into clusters. An illustration of 
the importance of analyzing phenotype clusters is 
shown in the significant difference in performance 
found in a population of 116 male larks and owls, 
despite a failure to detect this difference in the regres-
sion of class performance versus weeknight sleep-
onset of all 350 males. As personal data become more 
common and more variable-rich, they will enable 
greater phenotypic dissection through clustered vari-
ables (e.g., also clustered against age, family educa-
tion, genetic profiles, etc.). Although sex is certainly 
not the only demographic variable of diagnostic 
value, it provides evidence for the potential useful-
ness of personalized user profiles for developing both 
academic understanding of the role of sleep and cir-
cadian rhythms in real-world populations, as well as 
for the discovery of patterns useful in guiding per-
sonal choice and policy to optimize education out-
comes in the future.
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Figure 3.  Comparison of phenotypic subgroups “lark” and 
“owl” with class performance. Comparison of larks and owls 
(defined within each sex as students whose mean weeknight 
sleep-onset is 1 standard deviation earlier or later than the group 
mean, respectively) finds a trend of increase in class performance 
for larks over owls in women (A, p = 0.057) and a significant 
effect in men (B, p = 0.0125). As a visual cue to the lark vs. owl 
comparison, a lark siluet is in the lower left on the side of those 
individuals fitting the definition of lark, and an owl in the lower 
right on the side of those fitting the definition of owl. Brackets 
point to the median of each population.
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Data Accessibility

All raw data used in the analyses presented here are 
archived at the Inter-university Consortium for Political 
and Social Research (www.ICPSR.umich.edu) under the 
Data Collection title “Smarr student sleep timing logs,” 
which will become available upon publication. Data can 
also be obtained from the author by email.

NOTE

Supplementary material is available on the journal’s  
website at http://jbr.sagepub.com/supplemental.
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